Preparing K–8 Preservice Teachers to Effectively Teach All Students: A Focus on Language, Culture,

Amy Roth McDuffie
Corey Drake
Julia Aguirre
Gina Currie

Other Project Collaborators Include:
Overview

- Goals, Collaborators and Settings, and Theoretical Framework
- Preservice Teacher Survey and Interview Findings (Preliminary)
- Two examples of instructional modules: Critical Cases Activity & Community Mathematics Exploration
- Discussion
Key Question and Goal

- **Question:** How can we connect children’s mathematical thinking and children’s community-and family-based mathematical funds of knowledge in elementary and middle school methods courses?

- **Goal:** To collaborate across multiple sites to design, refine, and study instructional modules for preK–8 mathematics methods courses that explicitly develop preservice teacher competencies related to mathematics, children’s mathematical thinking and community/cultural...
Conference with Mathematics Teacher Educators Launched Project Work

- May, 2008, in Tucson, Arizona
- 38 participants from 19 institutions
- Participants considered a conceptual framework and readings & began instructional module development and a research plan
- Work from conference laid the foundation for our project and resulted in initial drafts of activities for instructional modules.
- Starting Fall 2008, collaborators began using
Diverse Range of Teaching

- **Urban**
  - J. Aguirre: University of Washington Tacoma
  - M. Foote: Queens College, CUNY

- **Mixture of Urban, Suburban, and Rural**
  - C. Drake: Iowa State University
  - A. Roth McDuffie: Washington State University Tri-Cities

- **Suburban**
  - T. Bartell: University of Delaware

- **Borderlands**
  - E. Turner: University of Arizona
Theoretical framework for examining PSTs’ knowledge, beliefs, and practices related to connecting children’s mathematical thinking and children’s family/community
Considering Preservice Teacher

- Engaging with the mathematical practices and identities of children and families as children move across contexts and spaces

- Analyzing, reflecting, and acting on their own practices and identities as they move across contexts and spaces
Conjectured Learning Trajectory for PSTs and Early Career Mathematics Teachers

Attention

Awareness

Making Emergent Connections

Making Meaningful Connections

Integrating & Incorporating Multiple Knowledge Bases in Mathematics Instruction
Preliminary Survey Findings

- Fall, 2008 and Spring, 2009
- Seven institutions
- 266 pre-semester respondents; 174 post-semester respondents

- Development of pre-service teachers from pre- to post
- Development of survey over time
Development of PSTs and Survey

- “Children can draw on their families’ mathematical knowledge and practices in solving word problems.”
  - Move from mixed responses (mostly “agree”) to more “strongly agree” and very few “disagree” or “strongly disagree”
  - Conjectured PST Development: Greater confidence, more specific practices/ideas, reduced deficit orientation

Survey development: Added a “Please explain your response” box for Fall, 2009 implementation
More Examples of Development
More Examples of Development

“Home and community activities can be inappropriate contexts for posing and solving mathematical problems”
More Examples of Development

- “Home and community activities can be inappropriate contexts for posing and solving mathematical problems”
  - Confusing questions; Responses very mixed
More Examples of Development

- “Home and community activities can be inappropriate contexts for posing and solving mathematical problems”
  - Confusing questions; Responses very mixed
  - Survey development – Eliminated question
More Examples of Development

- “Home and community activities can be inappropriate contexts for posing and solving mathematical problems”
  - Confusing questions; Responses very mixed
  - Survey development – Eliminated question

- “Home and community activities are good contexts for posing and solving mathematical problems.”
More Examples of Development

- “Home and community activities can be inappropriate contexts for posing and solving mathematical problems”
  - Confusing questions; Responses very mixed
  - Survey development – Eliminated question

- “Home and community activities are good contexts for posing and solving mathematical problems.”
  - Nearly all “Agree” or “Strongly Agree”, even at the
Survey Results in WSU 2008–9

- Pre/post survey data was collected at the commencement and conclusion of Elementary Mathematics Methods classes in 2008 and 2009.

- A snapshot of the questions and PST responses from the Tri-Cities Campus indicate there is a spectrum of responses ranging from...
Question #1 (Likert scale question): Getting to know students’ families and becoming familiar

<table>
<thead>
<tr>
<th>Strongly Disagree</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

| Disagree          | 7.1%    | 0%      |
|                   |         |         |

| Agree             | 28.6%   | 16.7%   |
|                   |         |         |

| Strongly Agree    | 64.3%   | 83.3%   |
|                   |         |         |

Friday, February 5, 2010
In addition to Likert response questions, PST’s were asked a series of Likert scale questions with the addition of comments as well as some open-ended items to help clarify their responses.

A snapshot of sample questions and...
Question #2 (Likert scale question with the)

Children’s home language can be barriers for making sense of and solving mathematical problems. (2008)
Student #1: No Clear Difference
Pre: Agree – “if the parents don’t have the knowledge they can’t help no matter what language they speak, but if they speak something other than traditional language of the country those parents may struggle in the ability to gain access to resources to help their child” (Deficit model– language barrier and knowledge barrier are seen to hinder parents’ ability to be a resource)
Pre: Agree – “if the parents don’t have the knowledge they can’t help no matter what language they speak, but if they speak something other than traditional language of the country those parents may struggle in the ability to gain access to resources to help their child” (Deficit model– language barrier and knowledge barrier are seen to hinder parents’ ability to be a resource)
Student #1: No Clear Difference

Pre: Agree – “if the parents don’t have the knowledge they cant help no matter what language they speak, but if they speak something other than traditional language of the country those parents may struggle in the ability to gain access to resources to help their child” (Deficit model– language barrier and knowledge barrier are seen to hinder parents’ ability to be a resource)

Post: Agree– “if parents can’t read the word then they
Student #2: Growth is Evidenced
Student #2: Growth is Evidenced

Pre: Agree – “I agree to some extent, learning academic vocabulary can be a challenge to some students.” (Focus on “math vocabulary” as the main problem—no acknowledgement of students’ diverse cultures/language)
Pre: Agree –“I agree to some extent, learning academic vocabulary can be a challenge to some students.” (Focus on “math vocabulary” as the main problem–no acknowledgement of students’ diverse cultures/language)
Student #2: Growth is Evidenced

Pre: Agree – “I agree to some extent, learning academic vocabulary can be a challenge to some students.” (Focus on “math vocabulary” as the main problem—no acknowledgement of students’ diverse cultures/language)

Post: Strongly Disagree – “Children’s home language can help students solve problems, not hinder them” (Acknowledges students’
Question #3 (Open-ended Item): How, if at all, do the socio-cultural identities of the students you teach impact your decisions about creating and teaching math? (2008)
Student #1: Growth is Evidenced
Student #1: Growth is Evidenced

Pre: “They help to inform me about types of material or ideas to reference…” (Surface level method of incorporating culture in mathematics lessons)
Student #1: Growth is Evidenced

Pre: “They help to inform me about types of material or ideas to reference…” (Surface level method of incorporating culture in mathematics lessons)
Student #1: Growth is Evidenced

Pre: “They help to inform me about types of material or ideas to reference…” (Surface level method of incorporating culture in mathematics lessons)

Post: “…. I am able to recognize that my students socio-cultural identities will play a major role in their ability to access the information presented so I will develop my lesson to target and support their needs, giving them many opportunities to develop their mathematical knowledge.” (Deeper level of incorporating knowledge of student’s culture and/
Student #2: Minimal Growth
Student #2: Minimal Growth

Pre: “I have always been one of those kids who just got it and zoned out when the teacher kept talking so I have to stay focused and make sure that I am looking (at the) problem from from multiple perspectives so each student can find a way that works for them.” (Focused on self as sharer of knowledge– does not acknowledge students as a resource/source of knowledge)
Student #2: Minimal Growth

Pre: “I have always been one of those kids who just got it and zoned out when the teacher kept talking so I have to stay focused and make sure that I am looking (at the) problem from multiple perspectives so each student can find a way that works for them.” (Focused on self as sharer of knowledge– does not acknowledge students as a resource/source of knowledge)
Pre: “I have always been one of those kids who just got it and zoned out when the teacher kept talking so I have to stay focused and make sure that I am looking (at the) problem from from multiple perspectives so each student can find a way that works for them.” (Focused on self as sharer of knowledge– does not acknowledge students as a resource/source of knowledge)

Post: “I try to use names of people from the same ethnicity of my students and objects or themes they
A. Critical Case Analysis
PSTs use multiple lenses to critically analyze and evaluate mathematics lessons (video clips and/or written cases).

B. Community Mathematics Exploration
PSTs identify mathematical practices and mathematical funds of knowledge in students’ communities and build on them in a standards-based mathematics lesson.

C. Studying Mathematical Competence
PSTs analyze how mathematical competence is evidenced and supported in two settings: a classroom mathematics lesson and an individual problem solving-based interview.

D. Curriculum Spaces (under development)
PSTs analyze mathematics curriculum materials to identify potential opportunities (or spaces) for accessing, building on,
Critical Cases Analysis: A Description

• PSTs prepare by reading relevant articles (e.g., participation and questioning) and/or by engaging in the mathematics tasks involved in the case.

• PSTs form small groups and view video cases through one of three lenses:
  1. The task/problems used;
  2. The teacher;
  3. Student participation and understanding.

• PSTs analyze and reflect individually and then discuss the case in small groups from their assigned lens.

• Groups each report their findings to the whole class (e.g., oral discussion, group posters) and class engages in discussion across the lenses.
Norms and Expectations for

- Each group focuses on their lens and responds to prompts given.
- Group may choose to “assign” specific prompts within their group.
- While watching the video, takes notes for specific quotes, actions, interactions to evidence findings.
- During discussion, ground comments and findings in specific evidence (avoid only making statements of “impressions”).
- When groups share with the whole class, each group shares 1 finding and then another group
Sources for cases include (see resource list):

- CGI (Cognitively Guided Instruction) books and professional development videotapes
- Children’s Mathematics (Carpenter et al., 1999)
- Thinking Mathematically (Carpenter et al., 2003)
- Annenberg’s Media “Teaching Math K–4 Video Library” (available on-line)
Sample Case: Amazing Equations
(Annenberg Video Library, Available Online)

- 1<sup>st</sup> & 2<sup>nd</sup> Grade Urban Elementary Class.
- Racially/Ethnically Diverse Classroom
- Addition and Subtraction; Problem Solving
- Teacher asks students (in groups) to write and illustrate their own story problem with an answer that equals 20.
- Video clips (14 minutes) shows excerpts from the lesson launch (whole class), explore (children working in groups), and summary
Benefits for PSTs’ Learning

Found improved attention to, awareness of, and making emergent connections between/among:

- Children’s Funds of Knowledge
- Mathematics Content
- Children’s Mathematical Thinking
- Task Analysis (for mathematics content and to anticipate thinking and learning)
- Participation Structures and Interaction Patterns that were different from “Teacher at the Front”
Benefits for PSTs’ Learning: Children’s Funds

- Discussed how asking children to write and illustrate a problem provided openings for children to connect the math to their experiences and their lives (e.g., members of their family, going to the store or playground, problems about roaches).
- Noticed how children communicate in many ways (words, pictures, gestures, manipulatives, equations, and multiple representations) and the value of providing
Challenges for PSTs

- Resisting over-simplification of issues and looking for the “quick fix” (e.g., thinking that the main point is to change the name of the park/store to match the park/store in the community).
- Understanding complex issues such as the role of identity, competence, and status in learning mathematics.
- Avoiding essentializing and/or perpetuating negative views of children from some groups (e.g., When roaches came up in the video, did this affirm some PSTs’ views that children of poverty live with roaches and/or live in unsanitary
Benefits: From the teacher educator perspective

- Opportunity for including multiple goals for PSTs learning. For example, for the Amazing Eq Case:
  - Role of children’s language and home/community experiences in learning (in line with project goals)
  - Launch, Explore, Summary Lesson Structure
  - Composing quantities and relationships between addition and subtraction
  - So focusing on project’s goals did not mean adding another activity – just adding purpose

- Using the 3 lenses pushed students to go beyond noticing only the teacher and his/her talk and
Challenges: From the teacher educator perspective

- Finding ways to make sure that all of these goals are achieved and all lenses are attended to:
  - Do the PSTs gain understandings for these multiple foci?
  - Is it too much at once? If so, what is lost?

- Finding cases and video clips that provide opportunities to discuss and connect mathematics content, children’s thinking, and children’s funds of knowledge.

- Following the discussion from each of the lenses, several MTEs struggled to facilitate a summary of the discussion to highlight important issues:
Add a 4\textsuperscript{th} lens to focus more on participation/interactions – 4 lenses will be: (1) Tasks; (2) Teaching; (3) Students & learning; & (4) Classroom interaction & participation patterns.

Align prompts for Critical Cases with Studying Mathematical Competence (the field-based observation activity) for better coherence and focus between the two activities – increasing opportunities to scaffold growth in attention and awareness for these foci.

Focus on designing summary questions.

Devote more time to draw on project partners’
Community Mathematics

- Purpose: to identify mathematical practices and mathematical funds of knowledge in students’ communities.

- Data Sources: (e.g. interviews, observations, pictures, maps, menus)

- Analysis

- Math Problem/Lesson Development
<table>
<thead>
<tr>
<th></th>
<th>Iowa State</th>
<th>Univ. of Arizona</th>
<th>CUNY: Queens College</th>
<th>Univ. of Delaware</th>
<th>UW Tacoma</th>
<th>WSU Tri-Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visits</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Interviews</td>
<td>Optional</td>
<td>Optional</td>
<td>X</td>
<td>X</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Guided–Tour</td>
<td>Optional</td>
<td>Optional</td>
<td>X</td>
<td>Optional</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>“virtual” tour</td>
<td></td>
<td></td>
<td>X</td>
<td>Optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pose a math problem</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Present Findings</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Math Lesson</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Friday, February 5, 2010
Lavandería/Laundromat

- Guided Tour of community by parent
- Social hub of the community
- Interviewed and observed mothers at the site (math practices, estimation)
- Developed standards-based Math Lesson
  - High cognitive demand activity
  - Problem-solving
**La Lavandería / The Laundromat**

Ud. vive con sus tres hermanos, sus dos padres, y su abuela. Cada semana, su familia tiene muchas ropas sucias para lavar — hoy, de facto, Uds. tienen 10 cargas!

Ud. se va a la lavandería con su madre para ayudarle. Ella quiere saber cuanto costaría para **lavar** (no sacar) toda la ropa. La puedes ayudar? Cuántas soluciones hay? Cuanto es lo máximo y lo mínimo que Uds. van a pagar? (Ya tienen detergente).

Después de lavar...ahora Ud. y su madre tienen 10 cargas de ropa mojada. Cuanto costaría secar la ropa? (Por lo medio, cada carga necesitaria 45 minutos de secar).

Use numeros, palabras, dibujos, manipulativos, etc. para mostrar sus trabajos y soluciones de su grupo.

---

You live with your three siblings, your two parents, and your grandmother. Every week, your family has lots of dirty laundry that needs to be washed — today, in fact, you have 10 loads of laundry!

You go to the laundromat to help your mother. She wants to know how much it will cost to **wash** (not dry) all the clothes. Can you help her? How many solutions are there? What is the maximum and minimum that you might pay? (You already have the detergent).

After the washing...now you and your mother have 10 loads of wet laundry. How much will it cost to dry all the loads? (On average, each load of laundry will need 45 minutes to dry).

Use numbers, words, drawings, manipulatives, etc. to show your group’s work and solutions.

---

**Extension Posible:**

Cada persona en su familia hace 1 ½ cargas de ropa sucia por semana, y Ud. no tiene detergente. Cuántas cargas necesitas lavar? Cuanto es lo mínimo y lo máximo que pagarias por lavar y secar toda la ropa?

---

**Precio de Secar (Drying Price)**

$0.25/15 min.

**Precio de Detergente (Detergent Price)**

$0.75/carga ($0.75/load)

---

**Enviro Safe Coin Lavandería**

[Image of a laundromat building]

---

**Precios de Lavar (Washing Prices)**

- La máquina de una carga / Single load washer: $1.75/load
- Las máquinas de dos cargas / Double load washer: $3.00/load
- Las máquinas de tres cargas / Triple load washer: $4.00/load
Precios de Lavar (Washing Prices)

La máquina de una carga / Single load washer:
$1.75/load
Las máquinas de dos cargas / Double load washer:
$3.00/load
Las máquinas de tres cargas / Triple load washer:
$4.00/load

Precio de Secar (Drying Price)

$.25/15 min.

Precio de Detergente (Detergent Price)

$.75/carga ($ .75/load)
You live with your three siblings, your two parents, and your grandmother. Every week, your family has lots of dirty laundry that needs to be washed – today, in fact, you have 10 loads of laundry!

You go to the laundromat to help your mother. She wants to know how much it will cost to wash (not dry) all the clothes. Can you help her? How many solutions are there? What is the maximum and minimum that you might pay? (You already have the detergent).

After the washing…now you and your mother have 10 loads of wet laundry. How much will it cost to dry all the loads? (On average, each load of laundry will need 45 minutes to dry).

Use numbers, words, drawings, manipulatives, etc. to show your group’s work and solutions.

Possible Extension:

Each person in your family makes 1 ½ loads of dirty laundry per week, and you don’t have any laundry detergent. How many loads of laundry do you need to wash? What is the minimum and maximum amounts that you will pay to wash and dry all the clothes?
“When one of the resource room teachers heard about our Community Math lesson project, she exclaimed that it was a great opportunity to “show them how to fix some of their problems. Maybe you can somehow make a lesson that will make parents care about their kids.” We felt passionately that this bias against the community was unfair – clearly parents in the Sunny Hill community care deeply about their children. As such, we wanted our lesson to be a tiny step in the opposite direction; we wanted our project to recognize (and even celebrate) students’ families and values rather than PSTs challenging deficit views.
Benefits for PSTs’ Learning

- “seeing math everywhere”

- New and more nuanced views of the community
  - as a math resource
  - complex spaces

- Enhanced view of students’ math funds of knowledge
Challenges for PSTs

- Tensions:
  - Access to the community
  - Perceived community resistance
  - Hard to connect to math or children’s mathematical thinking
Benefits for Teacher Educators

- Leverages key progress toward project goals of developing an integrated teaching knowledge base and set of practices that privilege mathematics and community-based funds of knowledge.

- Produces transformative experiences in mathematics instruction
  - Expanding PSTs’ views about mathematics and mathematical practice
Challenges for Teacher Educators

- Logistics
  - Community access, physical location

- Pre-preparation

- Explicit connections to mathematics and children’s mathematical thinking

- Supporting PSTs movement toward making meaningful connections
Changes and works in progress for

- Connect exploration to a standards–based mathematics lesson

- Assignment Preparation:
  - Provide supports for PSTs to introduce/discuss project with community members
  - Use CME math lessons as exemplars

- Provide options to maximize flexibility given
Benefits and Challenges for Discussion: Think, Pair/Group, Share

- Given the multiple goals that we are trying to achieve that aim to link math content, children’s mathematical thinking, and children’s funds of knowledge, how can we privilege these three foci in this work?
  - Do we need to connect all areas in activities?
  - Do we need to take on components individually and then try to put them together later (or assume that PSTs will put parts together later)?

- Have you tried other activities/experiences that you could share that link these three things?
Acknowledgements...

- We would like to thank and acknowledge the contributions of our collaborators: Erin Turner, Alejandro Andreotti, Tonya Bartell, Marta Civil, Mary Foote, Tonia Land, Maura Varley

- This project was funded in part by the